Triangular Uhf Algebras over Arbitrary Fields

نویسندگان

  • R. L. BAKER
  • Palle E. T. Jorgensen
چکیده

Let K be an arbitrary field. Let (qn) be a sequence of positive integers, and let there be given a family \f¥nm\n > m} of unital Kmonomorphisms *F„m. Tqm(K) —► Tq„(K) such that *¥np*¥pm = %im whenever m < n , where Tq„ (K) is the if-algebra of all q„ x q„ upper triangular matrices over K. A triangular UHF (TUHF) K-algebra is any Kalgebra that is A'-isomorphic to an algebraic inductive limit of the form &~ = lim( Tq„ (K) ; W„m ). The first result of the paper is that if the embeddings ^Vnm satisfy certain natural dimensionality conditions and if £? = lim (TPn(K) ; Onm) is an arbitrary TUHF if-algebra, then 5? is A-isomorphic to ^ , only if the supernatural number, N[{pn)], of (q„) is less than or equal to the supernatural number, N[(p„)], of (pn). Thus, if the embeddings i>„m also satisfy the above dimensionality conditions, then S? is À"-isomorphic to F , only if NliPn)] = N[(qn)] ■ The second result of the paper is a nontrivial "triangular" version of the fact that if p, q are positive integers, then there exists a unital A"-monomorphism MP(K), only if q\p . The first result of the paper depends directly on the second result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication over Arbitrary Fields

We prove a lower bound of 52n2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields

We prove a lower bound of 52n 2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

2 A CERTAIN p - ADIC SPECTRAL THEOREM

3 ABSTRACT. We extend a p-adic spectral theorem of M. M. Vishik to a certain class of p-adic Banach algebras. This class includes inductive limits of finite-dimensional p-Banach algebras of the form B(X), where X is a p-adic Banach space of the form X ≃ Ω p (J), J being a finite nonempty set. In particular, we present a p-adic spectral theorem for p-adic UHF algebras and p-adic TUHF algebras (T...

متن کامل

Lexicographic semigroupoids

The natural lexicographic semigroupoids associated with Cantor product spaces indexed by countable linear orders are classified. Applications are given to the classification of triangular operator algebras which are direct limits of upper-triangular matrix algebras. 0. Introduction Consider a Cantor space which is presented explicitly as an infinite product of finite topological spaces. The pro...

متن کامل

Ela Graded Triangular Algebras

The structure of graded triangular algebras T of arbitrary dimension are studied in this paper. This is motivated in part for the important role that triangular algebras play in the study of oriented graphs, upper triangular matrix algebras or nest algebras. It is shown that T decomposes as T = U + ( ∑ i∈I Ti), where U is an R-submodule contained in the 0-homogeneous component and any Ti a well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010